a2 United States Patent

US009189253B2

(10) Patent No.: US 9,189,253 B2

Harper et al. 45) Date of Patent: Nov. 17,2015
(54) REENTRANT WINDOW MANAGER (56) References Cited
U.S. PATENT DOCUMENTS
(75) Inventors: John S. Harper, San Francisco, CA
(US); Geoffrey Stahl, San Jose, CA 5,722,999 A * 3/1998 Snellcccoooveviieienninne. 607/32
(US); Assana M. Fard, Sunnyvale, CA 2008/0030504 Al* 2/2008 Brunner et al ... 345/473
(US) 2009/0240935 Al* 9/2009 Shuklaccccoevernnene 713/100
OTHER PUBLICATIONS
(73) Assignee: Apple Inc., Cupertino, CA (US) “Core Animation Programming Guide.” Apple Inc. Cupertino, CA.
2010. p. 1-89.
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35 Y
U.S.C. 154(b) by 871 days. Primary Examiner — James A Thompson
Assistant Examiner — Tapas Mazumder
1) Appl. No.: 13/366,181 (74) Attorney, Agent, or Firm — Blank Rome LLP
| (57) ABSTRACT
(22) Filed: Feb. 3. 2012 Systems, methods, and computer readable media for imple-
’ T menting reentrant compositing window manager applications
are described. In general, techniques are disclosed for using a
(65) Prior Publication Data second application to composite portions of hierarchically
structured objects and the window manager to composite
US 2013/0201196 Al Aug. 8, 2013 certain other portions of the same object. More particularly, a
window manager application may be used to composite
(51) Int.CL objects of a first type (e.g., application backing store bitmaps)
G09G 5/36 (2006.01) and then call or invoke a second application to composite
GO6F 9/44 (2006.01) objects of a second type (e.g., hierarchically structured
G09G 5/14 (200 6.01) objects). The second type of object includes information
’ (e.g., areference) of the composite window manager’s output
G09G 5/393 (2006.01) buffer at the time the second application was invoked. This
(52) US.CL knowledge may be used by the second application to call back
CPC ..o, GO6F 9/4445 (2013.01); GOIG 5/14 into the window manager in a manner that permits the gen-
(2013.01); GO9G 5/393 (2013.01) eration of unique visual effects without violating modern
(58) Field of Classification Search memory management scriptures regarding the separation of

CPC ... GOGF 9/4445; G09G 5/14; G09G 5/393
See application file for complete search history.

30

310

application memory spaces.
17 Claims, 6 Drawing Sheets

REENTRANT WINDOWS
MANAGER PROCESS 300

S
‘{ OBTAIN OBJECT

360

FROM 350 HIERARCHICALLY NO
FIG. 38 STRUCTURED?

COMPOSITE OBIECT
INTO MB

CAPTURE
MB STATE

315

320

! COMPOSITE PART OF
© TOBECTINTOMB N

o 3, STRUCTURED

CALL WS WITH
! REFERENCETOMB |
i INTERMEDIATE STATE |

Y
GOTO 330
FIG. 3B

SEND OBJECT TO
SECOND APP.

YES BITMAP J)

OBJECT

HIERARCHICALLY

OBJECT

GOTO 350
FIG. 38

[winoow svr.

i1 SECOND APP.

U.S. Patent Nov. 17, 2015 Sheet 1 of 6 US 9,189,253 B2

COMPOSITE WINDOW MANAGER 100

o—
WINDOW AB — DISPLAY

Y

AN SERVER
110 — :)
115
g 4
120 105 125 FIG. 1
(PRIOR ART)
A

LAYER TREE 200

FIG. 2

U.S. Patent Nov. 17, 2015

Sheet 2 of 6 US 9,189,253 B2

REENTRANT WINDOWS
MANAGER PROCESS 300

305
\k- OBTAIN OBJECT
310 360
<)4 é
FROM 350 HIERARCHICALLY NO,! COMPOSITE OBJECT
FIG. 3B STRUCTURED? INTO MB

CAPTURE | YES

MB STATE
315 v
_| SEND OBJECT TO
SECOND APP.
2

. COMPOSITE PART OF
OBJECT INTO MB

v e e e

CALL WS WITH
REFERENCE TO MB
INTERMEDIATE STATE

uuuuuuuuu ruww»wuwwj

GOTO 330
FIG. 3B

FIG. 3A

i

> OBJECT

HIERARCHICALLY
STRUCTURED

A4

BITMAP ¢
OB3ECT

\d

GOTO 350
FIG. 3B

[] winoow svr.

-

| | SECOND APP.

U.S. Patent Nov. 17, 2015 Sheet 3 of 6

300 (CONT.)
i FROM 325
FIG. 3A

330 Y

COMPOSITE MB
STATE INTO MB

335 y

RETURNTO
SECOND APP.

340

FINISH COMPOSITING :

| OBJECTINTOMB |

FROM 365
| RETURNTOWS | (SR
350

Q 1

DONE? >

YES

i

355 y
DISPLALY MB

FIG. 3B

US 9,189,253 B2

[] winoow svr.

| 1 SECOND APP

NO GOTO 310
FIG. 3A

U.S. Patent Nov. 17, 2015 Sheet 4 of 6 US 9,189,253 B2

NOTIFICATIN CENTER
WINDOW 400 §

INTERNAL
REFLECTION
405

ROLL
ELEMENT
410

EXTERNAL
EDGE 415 —

. FIG. 4A

US 9,189,253 B2

Sheet 5 of 6

Nov. 17, 2015

U.S. Patent

02y MOGNIM LN3WdOT13A3A W
Y3 LN3D NOILVII4ILON

— S¢v

US 9,189,253 B2

Sheet 6 of 6

Nov. 17, 2015

U.S. Patent

S "DId

055 >
MH
LNO-NYDS
085 0ss
3 < <
SbS 0vS SI0IAIA
1 1 OVI0LS | | i
AMOWIW | | Su3sna 005
ol | WNLAL | | AYOWIW SIS 595 - 2
R AYOWIW >l (S)NdD
SES MH SOTHAVYD
A A A
\i A\ \ 4 A\
0ES WILSAS ONILVYIAO
NNV
OO
szs
§TS

US 9,189,253 B2

1
REENTRANT WINDOW MANAGER

BACKGROUND

This disclosure relates generally to the field of computer
graphics. More particularly, but not by way of limitation, this
disclosure describes reentrant window server software.

A compositing window manager is software that draws a
graphical user interface on a computer display—it positions
windows, draws additional elements on windows (e.g., bor-
ders and title bars), and controls how windows interact with
each other and with the rest of the desktop environment. In
operation, a compositing window manager provides each
application off-screen memory for window memory and
composites these windows/buffers into designated memory
(e.g., an assembly buffer), the contents of which represent the
screen or desktop environment. Because compositing win-
dow mangers have access to all application window memory,
they may also perform additional processing such as, apply-
ing two-dimensional (2D) and three-dimensional (3D) ani-
mated effects such as blending, fading, scaling, rotation,
duplication, bending and contortion, shuffling, blurring, redi-
recting applications, and translating windows into one of a
number of displays and virtual desktops.

Referring to FIG. 1, prior art composite window manager
100 uses window server application 105 to composite appli-
cation window buffer memory 110, 115, and 120 into assem-
bly buffer 125 in a back-to-front order (i.e., 110—115—+120)
such that later drawn windows (e.g., window 120) may
wholly or partially occlude, such as through transparency,
prior composited windows (e.g., windows 110 and 115). The
centralized nature of composite window manager 100 and
modern system design in which each application is allocated
its own distinct and non-shared memory space, inhibits run-
time applications from generating visual effects based on
prior composited window memory. While window server 105
can account for prior composited content when generating a
graphic effect (e.g., a blur or reflection), applications them-
selves cannot. Thus, it would be beneficial to provide a
mechanism by which individual applications can take into
account the effect of prior composited window memory with-
out disturbing (or violating) modern memory management
schemes.

SUMMARY

In one embodiment the invention provides a method to use
a reentrant window manager application. The method
includes a window manager application (a.k.a., a window
server) compositing one or more bitmap objects (e.g., appli-
cation backing stores) into an assembly buffer memory so that
the assembly buftfer memory has a first bitmap content. Iden-
tifying, during compositing operations, a hierarchically struc-
tured object and passing control for compositing the object to
a second application (one designed to process hierarchically
structured objects). Compositing the first bitmap content into
a memory in response to receiving control for doing so from
the second application and, thereafter, returning control to the
second application. A computer executable program to imple-
ment the method may be stored in any non-transitory media
that is readable and executable by a computer processor.

In another embodiment, the invention provides a method to
generate graphical user interface elements. This implemen-
tation includes receiving a hierarchically structured object
from a window server application, the hierarchically struc-
tured object including elements of a first type (e.g., hierarchi-
cal elements) and bitmap content (or reference to bitmap

5

10

15

20

25

30

35

40

45

50

55

60

65

2

content). Once received, at least some of the first type of
elements may be composited into the window server’s assem-
bly buffer memory. When the bitmap content is encountered
while processing the hierarchical object, a request may be
sent to the window server to composite the bitmap content
into a memory. On receiving notification from the window
server that the bitmap content has been composited into the
memory, the remainder of the elements of the first type may
be composited into the memory and, after the entire hierar-
chical object in processed (including causing the bitmap con-
tent to be composited into a memory by the window server),
transferring control to the window server application. This
embodiment too may be implemented using computer pro-
gram instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows, in block diagram form, a compositing win-
dow manager in accordance with the prior art.

FIG. 2 shows, in schematic form, a layer tree in accordance
with one embodiment.

FIGS. 3A and 3B show, in flowchart form, a reentrant
window manager method in accordance with one embodi-
ment.

FIGS. 4A and 4B provide screen shots of a development
environment illustrating certain features of the disclosed
memory manager technique.

FIG. 5 shows, in block diagram form, a system that may
implement the window manager operation of FIG. 3.

DETAILED DESCRIPTION

This disclosure pertains to systems, methods, and com-
puter readable media for implementing reentrant compositing
window manager applications. The described techniques per-
mit compositing window managers to work in concert with
applications designed to composite hierarchically structured
objects. Illustrative hierarchically structured objects include,
but are not limited to, the Mac OS X “Dock” (the icon bar at
the bottom of a Mac OS X window) and the “Finder Desktop”
are represented as hierarchical layer trees. In general, tech-
niques are disclosed for using a second application to com-
posite portions some objects and which can call back into the
window manager to composite certain other portions of the
same object. More particularly, a window manager applica-
tion may be used to composite objects of a first type (e.g.,
bitmap objects such as application backing stores) and then
call or invoke a second application to composite objects of a
second type (e.g., hierarchically structured objects such as
layer trees). The second type of object may include knowl-
edge of the composite window manager’s output buffer at the
time the second application was invoked (e.g., the window
manager’s assembly buffer). This knowledge may be used by
the second application to invoke the window manager in a
manner that permits the generation of unique visual effects
without violating modern memory management scriptures
regarding the separation of application memory spaces.

In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the inventive concept. As part of
this description, some of'this disclosure’s drawings represent
structures and devices in block diagram form in order to avoid
obscuring the invention. In the interest of clarity, not all
features of an actual implementation are described in this
specification. Moreover, the language used in this disclosure
has been principally selected for readability and instructional
purposes, and may not have been selected to delineate or

US 9,189,253 B2

3

circumscribe the inventive subject matter, resort to the claims
being necessary to determine such inventive subject matter.
Reference in this disclosure to “one embodiment” or to “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of the invention, and
multiple references to “one embodiment” or “an embodi-
ment” should not be understood as necessarily all referring to
the same embodiment.

It will be appreciated that in the development of any actual
implementation (as in any development project), numerous
decisions must be made to achieve the developers’ specific
goals (e.g., compliance with system- and business-related
constraints), and that these goals will vary from one imple-
mentation to another. It will also be appreciated that such
development efforts might be complex and time-consuming,
but would nevertheless be a routine undertaking for those of
ordinary skill in the design of window management and com-
puter graphic systems having the benefit of this disclosure.

As noted above with respect to FIG. 1, prior art window
managers take as input application backing stores whose
contents are bitmaps—flat data structures. In addition to com-
positing application bitmaps, a window manager within the
Macintosh operating system, or Mac OS®, also permits
applications to represent objects as layer trees—hierarchical
data structures. (MAC OS is a registered trademark of Apple
Inc.) When such an object is encountered during compositing
operations, the window manger can send the layer tree (e.g.,
via a “call” operation) to a second application responsible for
interpreting and compositing the layer tree’s nodes into a
window manager memory buffer. For information relating to
layer tree objects see the “Core Application Programming
Guide” (copyright 2010 by Apple Inc.), and commonly-
owned patent applications 2011/0273464, entitled “Frame-
work for Graphics Animation and Compositing Operations”
(filed Jul. 19, 2011) and 2009/0225093 entitled “Buffers For
Display Acceleration” (filed Mar. 3, 2009), both of which are
hereby incorporated by reference in their entirety.

In accordance with this disclosure, one or more nodes
within a layer tree may reference (or include) the state of a
window manager’s memory buffer at the time the window
manager calls into the second application. As a reference to a
window manager memory buffer, the layer tree node perforce
corresponds to a bitmap object. As such, when the second
application processes the layer or node incorporating this
reference, it may call back into the window manager to com-
posite the referenced bitmap. This call-back or reentrant
behavior permits the layer tree’s associated application to
take into account prior composited windows (associated with
other applications) to generate unique visual effects for its
display window that are not possible using conventional com-
posting window managers. (It should be noted, the layer
tree’s referenced bitmap represents the state of a window
manager memory buffer at the time the second application
was called, such state generally being different than the state
of'the memory buffer when the second application calls back
into the memory manager.)

One illustrative “second application” in the Mac OS X
environment is Core Animation. (OS X and CORE ANIMA-
TION are registered trademarks of Apple Inc.) Another illus-
trative “second application” is Core Image. As currently
embodied, Core Animation and Core Image are Objective-C
frameworks that support the processing of layer trees as well
as control over the compositing process that renders one layer
on top of another. Functionally, Core Animation and Core
Image sit between a programmer and the underlying graphics
hardware (e.g., graphics processing units or GPUs), are

10

15

20

25

30

35

40

45

50

55

60

65

4

threaded to take advantage of multiple central processing
units (CPUs) or cores, and uses OpenGL. (OPENGL is a
registered trademark of SGI International, Inc.) In various
embodiments Core Animation and/or Core Image may be
implemented as libraries. As commonly used, a library is a
software component whose control, when executing, stays
within the calling (kernel) process.

Referring to FIG. 2, layer tree 200 in accordance with one
embodiment may be represented as a hierarchically arranged
collection of nodes (e.g., nodes A through K), where each
layer or node represents an object having various properties
and attributes, the sum of which may be used to build the
associated application’s graphical user interface (GUI). In
general, each node in layer tree 200 may include content,
windows, views, video, images, text, media, etc. In accor-
dance with this disclosure, a layer (e.g., layer 205) may ref-
erence the state of a memory manager’s memory buffer at the
time the second application is called (a bitmap).

Referring to FIG. 3 A, reentrant window manager operation
300 in accordance with one embodiment begins by obtaining
a first window (block 305); recall, a window manager pro-
cesses windows in a back-to-front manner. A check may then
be made to determine if the obtained window contains a
hierarchically structured object such as, for example, layer
tree 200 (block 310). If the obtained window includes a hier-
archically structured object (the “YES” prong of block 310),
the object may be passed to a second application for process-
ing (block 315). In the Mac OS, one such “second applica-
tion” is Core Animation. As previously noted, a layer tree in
accordance with this disclosure includes a layer that refer-
ences window manager buffer memory. More specifically,
such a reference is associated with the state or content of a
window manger’s buffer memory (i.e., a bitmap) at the time
the second application is called. The second application may
then process the object until it encounters the layer that ref-
erences the window manger’s buffer memory bitmap (block
320)—e.g., node 205 in layer tree 200. When this occurs, the
second application may call the window manager back, pass-
ing it a reference to the window manager’s own memory
buffer (block 325). In another embodiment, the layer (e.g.,
layer 205) includes the aforementioned referenced bitmap.
By way of example, in one Mac OS X embodiment the ref-
erence may be a character string which the window manager
has previously registered with Core Animation (e.g.,
“com.apple. WindowServer. AssemblyBuffer”). When Core
Animation (e.g., the second application) encounters this ref-
erence while processing a hierarchical object, it can look into
a table (or other internal data storage) to identify the string
and associated functions. Core Animation can then use these
functions to call into the window manager as described
herein.

Referring to FIG. 3B, when called by the second applica-
tion (block 325), the window manager can composite the
referenced bitmap into a window manager memory buffer
(block 330). The memory bufter used may, or may not, be the
window manager’s assembly buffer. With its “callback task”
complete, the window manager executes a return to the sec-
ond application (block 335). Continuing the above example,
when the window manager is called by Core Animation
(block 325), it doesn’t make a copy of the referenced memory
buffer, but instead draws the assembly buffer into an OpenGL
rendering context provided by Core Animation as part of the
calling process of block 325. The OpenGL rendering context
can be attached to a bufter defined by Core Animation. In this
way, if Core Animation wants a copy to be made it can attach
the OpenGL context to a temporary buffer before calling into
the window server. If, on the other hand, Core Animation

US 9,189,253 B2

5

doesn’t want a copy it can leave the OpenGL context attached
to the assembly buffer. (In practice the OpenGL context is
originally given to Core Animation by the window manager
during acts in accordance with block 315).

The second application, in turn, can complete processing
the layer tree (block 340), where after it executes a return to
the window manager (block 345). If there are currently no
more windows for the window manager to process (the
“YES” prong of block 350), the window manager sends its
memory buffer contents for display (block 355). Display
operation 355 may involve sending the memory buffer con-
tents to a frame buffer and then, using scan-out hardware, to
a video display. If there remain windows to be processed
before a display event (the “NO” prong of block 360), win-
dow manager operations continue at block 310 of FIG. 3A.
Returning to FIG. 3A, if the object obtained in accordance
with block 305 is not hierarchically structured (the “NO”
prong of block 360), it may be composited into the window
manager’s memory buffer (block 360) whereafter window
manager operations continue at block 350 in FIG. 3B.

By way of example, and not limitation, a reentrant window
manager in accordance with this disclosure has been used to
provide a “Notification Center” application in Mac OS X with
the means to generate reflection effects for its window based
on the state of the desktop environment “below” it. That is,
using knowledge of the desktop state that is, in the prior art,
not available to the application. As shown in FIG. 4A, Noti-
fication Center window 400 presents a user with the status of
their platform (e.g., battery level) and other relevant personal
information (e.g., mail and calendar events). In one embodi-
ment, when the Notification Center application launches,
window 400 becomes the top-most window on the output
display device. Internal reflection effect 405 may be provided
on the Notification Center’s window’s “roll” element 410 in
accordance with prior art rendering techniques. If Notifica-
tion Window 400 is to provide a reflection along the roll’s
external edge 415 that reflects the state of the underlying
desktop, information outside the Notification Center applica-
tion’s memory space is needed.

FIG. 4B shows Notification Center Development Window
420 as it appears during program development. Of particular
interest is the hierarchical representation of the Notification
Window object in region 425. Specifically, within region 425
the Notification Window object’s layer tree in represented in
anindented-list format. As shown there, the Notification Win-
dow object’s Root Layer encompasses Desktop Element 430,
Notification Center (NC) Clipper 435, and Roll Container
440. Roll Container 440 may be seen to include Reflection
Desktop 445 which, in turn, includes Assembly Buffer ele-
ment 450. In this embodiment, it is Assembly Buffer element
450 that references the bitmap representation of the desktop
environment (as generated by a window manager in accor-
dance with this disclosure) at the time the window manager
calls into Core Animation with the Notification Window
object’s layer tree. (See FIG. 3A at 315.)

Turning now to FIG. 5, illustrative computer system 500
within which the disclosed memory manager may be imple-
mented is shown. Computer system 500 includes one or more
client applications (505 and 510) that communicate with win-
dow manager 515 through one or more application program-
ming interface (API) libraries 520. Applications 505 and 510
may, for example, include media players, web browsers,
games, office software, databases, system utilities, etc. In one
embodiment, applications 505 and 510 communicate with
window manager 515 through an OpenGL API. As described
above with respect to FIG. 3, window manager 515 may also
communicate with a “second application” such as, for

10

15

20

25

30

35

40

45

50

55

60

65

6

example, Core Animation 525. Both window manager 515
and Core Animation 525 may communicate with operating
system 530 and graphics hardware 535 through one or more
APIs such as OpenGL or Direct3D (not shown). (DIRECT3D
is a registered trademark of the Microsoft Corporation.)
Graphics hardware 535 typically includes both working or
buffer memory 540 and texture memory 545. Texture
memory may be used to store texture maps so that they may be
applied to the surfaces of graphical objects. Scan-out hard-
ware 550 takes the content of memory bufters (e.g., assembly
or frame buffer memory) and sends it to display device 555
(e.g., a standard computer screen or a touch screen).

System 500 is also shown to include one or more CPUs
560, one or more output devices 565, one or more input
devices 570, memory 575, and storage 580. CPUs 560 may
include any programmable control device including, without
limitation, one or more members from: the Intel Core®, Intel
Atom®, Pentium and Celeron® processor families. (INTEL
CORE, INTEL ATOM, PENTIUM and CELERON are reg-
istered trademarks of the Intel Corporation.) CPUs 560 may
also be implemented as a custom designed circuit that may be
embodied in hardware devices such as application specific
integrated circuits (ASICs) and field programmable gate
arrays (FPGAs). Output devices 565 and input devices 570
may provide audio, and/or visual and/or tactile based inter-
faces. Memory 575 may include one or more different types
of media (typically solid-state). For example, memory 575
may include memory cache, read-only memory (ROM), and/
or random access memory (RAM). Storage 580 may store
media (e.g., audio, image and video files), computer program
instructions or software, preference information, device pro-
file information, and any other suitable data. Storage 580 may
include one more non-transitory storage mediums including,
for example, magnetic disks (fixed, floppy, and removable)
and tape, optical media such as CD-ROMs and digital video
disks (DVDs), and semiconductor memory devices such as
Electrically Programmable Read-Only Memory (EPROM),
and Electrically Erasable Programmable Read-Only Memory
(EEPROM). Memory 575 and storage 580 may be used to
tangibly retain computer program instructions organized into
one or more modules and written in any desired computer
programming language. When executed by CPUs 560 and/or
graphics hardware 535 such computer program code may
implement one or more of the methods described herein.

While not shown, it will be understood that system 500
may also include communication interfaces to enable com-
municate with other equipment via one or more networks
(e.g., local networks such as a USB network, a business’ local
area network, or a wide area network such as the Internet).
System 500 may represent any number of computational
platforms such as, without limitation, personal desktop com-
puters, notebook computers, workstation computer systems,
server computer systems, pad computer systems and other
mobile platforms such as personal music and video devices
and mobile telephones.

Various changes in the materials, components, circuit ele-
ments, as well as in the details of the described operational
methods are possible without departing from the scope of the
following claims. For instance, a hierarchical object’s refer-
ence to the window manager’s memory buffer may be pro-
vided in any number of ways. In one embodiment, the win-
dow manager itself may insert the reference into the object
before passing it to the second application. In another
embodiment, the hierarchical object may use a constant value
known to the memory manager and second application alike
to refer to a specified quantum of memory. In addition, the

US 9,189,253 B2

7

disclosed techniques are not restricted to the use of layer
trees. Any object having a hierarchical structure may be used
(i.e., not a bitmap).
It is to be understood that the above description is intended
to be illustrative, and not restrictive. The material has been
presented to enable any person skilled in the art to make and
use the invention as claimed and is provided in the context of
particular embodiments, variations of which will be readily
apparent to those skilled in the art (e.g., some of the disclosed
embodiments may be used in combination with each other).
Many other embodiments will be apparent to those of skill in
the art upon reviewing the above description. The scope of the
invention therefore should be determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled. In the appended claims, the
terms “including” and “in which” are used as the plain-En-
glish equivalents of the respective terms “comprising” and
“wherein.”
The invention claimed is:
1. A non-transitory program storage device, readable by a
programmable control device and comprising instructions
stored thereon to cause the programmable control device to
execute a window server application to:
composite one or more bitmap objects into an assembly
buffer memory so that the assembly buffer memory has
a first bitmap content;

identify a hierarchically structured object to be composited
into the assembly buffer memory, the hierarchically
structured object including a reference to the first bitmap
content;

pass control for compositing the hierarchically structured

object to a second application;

receive control from the second application to composite

the first bitmap content into a memory;

composite the first bitmap content into the memory in

response to receiving control from the second applica-
tion;

return control back to the second application after compos-

iting the first bitmap content into the memory; and
receive from the second application, after the returning, an

indication that at least one element of the hierarchically

structured object has been composited into the memory.

2. The non-transitory program storage device of claim 1,
wherein the instructions to composite one or more bitmap
objects into an assembly buffer memory comprise instruc-
tions to composite an ordered sequence of the one or more
bitmap objects into the assembly buffer memory.

3. The non-transitory program storage device of claim 1,
wherein at least one of the one or more bitmap objects com-
prise application backing store content.

4. The non-transitory program storage device of claim 1,
wherein the instructions to identify a hierarchically structured
object comprise instructions to identify a layer tree object.

5. The non-transitory program storage device of claim 1,
wherein the reference to the first bitmap content in the hier-
archically structured object comprises a copy of the first
bitmap content.

6. The non-transitory program storage device of claim 1,
wherein the instructions to composite the first bitmap content
into the memory comprise instructions to use the reference to
the first bitmap content from the hierarchically structured
object.

7. The non-transitory program storage device of claim 1,
further comprising instructions to cause the programmable
control device to receive control back from the second appli-
cation after the hierarchically structured object has been com-
pletely composited into the memory.

20

25

30

35

40

45

50

65

8

8. The non-transitory program storage device of claim 1,
further comprising instructions to cause the programmable
control device to cause the assembly buffer memory to be
displayed on a display device.
9. The non-transitory program storage device of claim 1,
wherein the second application comprises temporary buffer
memory.
10. A method to display graphical objects in a computer
system, comprising a window manager application perform-
ing the following acts:
compositing one or more bitmap objects into an assembly
buffer memory so that the assembly buffer memory has
a first bitmap content;

identifying a hierarchically structured object, the hierar-
chically structured object including a reference to the
first bitmap content;

passing control for compositing the hierarchically struc-

tured object to a second application;
receiving control back from the second application to com-
posite the first bitmap content into a memory;

compositing the first bitmap content into the memory in
response to receiving control from the second applica-
tion;
returning control for compositing the hierarchically struc-
tured object to the second application after compositing
the first bitmap content into the memory; and

receiving from the second application, after the returning,
an indication that at least one element of the hierarchi-
cally structured object has been composited into the
memory.

11. The method of claim 10, wherein the act of compositing
one or more bitmap objects into an assembly buffer memory
comprise compositing at least one application backing store
content into the assembly buffer memory.

12. The method of claim 11, wherein the act of compositing
the first bitmap content into the memory comprises using the
reference to the first bitmap content from the hierarchically
structured object.

13. The method of claim 10, further comprising receiving
control back from the second application after the hierarchi-
cally structured object has been completely composited into
the memory.

14. A non-transitory program storage device, readable by a
programmable control device and comprising instructions
stored thereon to cause the programmable control device to
execute an application to:

receive a hierarchically structured object from a window

server application, the hierarchically structured object
including elements of a first type and a reference to
assembly buffer bitmap content;

composite at least some of the first type of elements into a

memory buffer;

send a request to the window server application to com-

posite the referenced assembly buffer bitmap content
into the memory buffer;

receive notification from the window server application

that the referenced assembly buffer bitmap content has
been composited into the memory buffer;

composite elements of the first type into the memory buffer

that were not previously composited into the memory
buffer; and

transfer control to the window server application, wherein

the transfer indicates the hierarchically structured object
has been composited into the memory buffer.

15. The non-transitory program storage device of claim 14,
wherein the instructions to cause the programmable control
device to composite elements of the first type into the memory

US 9,189,253 B2

9

buffer that were not previously composited into the assembly
buffer further comprise instructions to cause the program-
mable control device to apply a visual effect to the content of
the memory buffer.

16. A method to display graphical objects in a computer
system, comprising:

receiving a hierarchically structured object from a window

server application, the hierarchically structured object
including elements of a first type and a reference to
assembly buffer bitmap content;

compositing at least some elements of the first type of

elements into an assembly buffer memory;

sending a request to the window server application to com-

posite the referenced assembly buffer bitmap content
into a memory;

receiving notification from the window server application

that the referenced assembly buffer bitmap content has
been composited into the memory;

in response to the act of receiving notification, compositing

other elements of the first type of elements into the
memory, wherein the other elements of the first type of
elements are not previously composited into the assem-
bly buffer memory; and

transferring control to the window server application,

wherein the transfer indicates the hierarchically struc-
tured object has been composited into the memory.

17. The method of claim 16, wherein the act of compositing
elements of the first type not previously composited into the
assembly buffer memory further comprises applying a visual
effect to the content of the memory.

#* #* #* #* #*

10

15

30

10

